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PART II: Programming in Prolog 
 

The only way to rectify our reasonings is to make them as tangible as those of the mathematicians, so that 
we can find our error at a glance, and when there are disputes among persons we can simply say, “Let us 
calculate… to see who is right.” 

—Leibniz, The Art of Discovery 
 

 
 

 

 As an implementation of logic programming, Prolog makes many 
important contributions to AI problem solving. First and foremost, is its 
direct and transparent representation and interpretation of predicate 
calculus expressions. The predicate calculus has been an important 
representational scheme in AI from the beginning, used everywhere from 
automated reasoning to robotics research. A second contribution to AI is 
the ability to create meta-predicates or predicates that can constrain, 
manipulate, and interpret other predicates. This makes Prolog ideal for 
creating meta-interpreters or interpreters written in Prolog that can 
interpret subsets of Prolog code. We will do this many times in the 
following chapters, writing interpreters for expert rule systems, exshell, 
interpreters for machine learning using version space search and 
explanation based learning models, and deterministic and stochastic natural 
language parsers. 

Most importantly Prolog has a declarative semantics, a means of directly 
expressing problem relationships in AI. Prolog also has built-in unification, 
some high- powered techniques for pattern matching and a depth-first left 
to right search. For a full description of Prolog representation, unification, 
and search as well as Prolog interpreter compared to an automated 
theorem prover, we recommend Luger (2009, Section 14.3) or references 
mentioned in Chapter 10. We will also address many of the important 
issues of Prolog and logic programming for artificial intelligence 
applications in the chapters that make up Part II. 

In Chapter 2 we present the basic Prolog syntax and several simple 
programs. These programs demonstrate the use of the predicate calculus as 
a representation language. We show how to monitor the Prolog 
environment and demonstrate the use of the cut with Prolog’s built in 
depth-first left-to-right search. We also present simple structured 
representations including semantic nets and frames and present a simple 
recursive algorithm that implements inheritance search. 

In Chapter 3 we create abstract data types (ADTs) in Prolog. These ADTs 
include stacks, queues, priority queues, and sets. These data types are the basis 
for many of the search and control algorithms in the remainder of Part II. 
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In particular, they are used to build a production system in Chapter 4, which 
can perform depth-first, breadth-first, and best-first or heuristic search. They also 
are critical to algorithms later in Part II including building planners, 
parsers, and algorithms for machine learning. 

In Chapter 5 we begin to present the family of design patterns expressed 
through building meta-interpreters. But first we consider a number of 
important Prolog meta-predicates, predicates whose domains of interpretation 
are Prolog expressions themselves. For example, atom(X) succeeds if X is 
bound to an atom, that is if X is instantiated at the time of the atom(X) 
test. Meta-predicates may also be used for imposing type constraints on 
Prolog interpretations, and we present a small database that enforces 
Prolog typing constraints.  

In Chapter 6 meta-predicates are used for designing meta-interpreters in 
Prolog. We begin by building a Prolog interpreter in Prolog. We extend 
this interpreter to rule-based expert system processing with exshell and 
then build a robot planner using add- and delete-lists along the lines of the 
older STRIPS problem solver (Fikes and Nilsson 1972, Nilsson 1980). 

In Chapter 7 we demonstrate Prolog as a language for machine learning, 
with the design of meta-interpreters for version space search and explanation-
based learning. In Chapter 8 we build a number of natural language 
parsers/generators in Prolog, including context-free, context-sensitive, 
probabilistic, and a recursive descent semantic net parser.  

In Chapter 9 we present the Earley parser, a form of chart parsing, an 
important contribution to interpreting natural language structures. The 
Earley algorithm is built on ideas from dynamic programming (Luger 2009, 
Section 4.1.2 and 15.2.2) where the chart captures sub-parse components 
as they are generated while the algorithm moves across the words of the 
sentence. Possible parses of the sentence are retrieved from the chart after 
completion of its left-to-right generation of the chart. 

Part II ends with Chapter 10 where we return to the discussion of the 
general issues of programming in logic, the design of meta-interpreters, and 
issues related to procedural versus declarative representation for problem 
solving. We end Chapter 10 presenting an extensive list of references on 
the Prolog language. 

 

 


